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Resum

L’aigua és el recurs més important per la vida al planeta Terra, cobrint més
del 70% de la seva superf́ıcie. Els oceans representen més del 70% de tota
l’aigua del planeta, i és on estan concentrats més del 99.5% dels éssers vius.
Un gran nombre d’ecosistemes depenen de la salut d’aquests oceans; el seu
estudi i protecció són necessaris.

Grans conjunts de dades durant llargs peŕıodes de temps i al llarg d’amples
àrees geogràfiques poden ser necessaris per avaluar la salut dels ecosistemes
aquàtics. El finançament necessari per aquesta recol.lecció de dades és consi-
derable però limitat, i per tant és important trobar noves formes més rendibles
d’obtenir i processar dades mediambientals marines.

La solució factible actualment és la de desenvolupar infraestructures obser-
vacionals que puguin incrementar significativament les capacitats de mostreig
convencionals. En aquest estudi promovem que es pot assolir aquesta solució
amb la implementació d’Observatoris Ciutadans, basats en la participació de
voluntaris.

Els observatoris ciutadans són plataformes que integren les últimes tec-
nologies de la informació amb ciutadans digitalment connectats, millorant les
capacitats d’observació, per desenvolupar un nou tipus de recerca coneguda
com a Ciència Ciutadana. La ciència ciutadana té el potencial d’incrementar
el coneixement del medi ambient, i dels ecosistemes aquàtics en particular,
mitjançant l’ús de persones sense coneixement cient́ıfic especific per recollir i
analitzar grans conjunts de dades.

Creiem que les eines basades en ciència ciutadana —programari lliure jun-
tament amb maquinari de baix cost i del tipus “fes-ho tu mateix” (do-it-
yourself en anglès)— poden ajudar a apropar la ciència del camp oceanogràfic
als ciutadans. A mesura que el gran públic participa activament en l’anàlisi
de dades, la recerca esdevé també una nova via d’educació pública.

Aquest és l’objectiu d’aquesta tesis, demostrar com el programari lliure i
el maquinari de baix cost “fes-ho tu mateix” s’apliquen de forma efectiva a
la recerca oceanogràfica i com pot desenvolupar-se cap a ciència ciutadana.
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Analitzem quatre escenaris diferents on es demostra aquesta idea: un exemple
d’ús de programari lliure per anàlisi de v́ıdeos de monitoratge de llagostes; una
demostració utilitzant tècniques similars de processat de v́ıdeo en un dispositiu
in-situ de baix cost “fes-ho tu mateix” per monitoratge de fauna submarina; un
estudi utilitzant programari lliure d’aprenentatge automàtic (machine learning
en anglès) com a mètode per millorar observacions biològiques; i finalment uns
resultats preliminars, com a prova de la seva viabilitat, de com un mostreig
manual de mostres d’aigua podria ser reemplaçat per maquinari de baix cost
“fes-ho tu mateix” amb sensors òptics.



Summary

Water is the most important resource for living on planet Earth, covering more
than 70% of its surface. The oceans represent more than 97% of the planet
total water and they are where more than the 99.5% of the living beings are
concentrated. A great number of ecosystems depend on the health of these
oceans; their study and protection are necessary.

Large datasets over long periods of time and over wide geographical areas
can be required to assess the health of aquatic ecosystems. The funding needed
for data collection is considerable and limited, so it is important to look at new
cost-effective ways of obtaining and processing marine environmental data.

The feasible solution at present is to develop observational infrastructures
that may increase significantly the conventional sampling capabilities. In this
study we promote to achieve this solution with the implementation of Citizen
Observatories, based on volunteer participation.

Citizen observatories are platforms that integrate the latest information
technologies to digitally connect citizens, improving observation skills for de-
veloping a new type of research known as Citizen Science. Citizen science
has the potential to increase the knowledge of the environment, and aquatic
ecosystems in particular, through the use of people with no specific scientific
training to collect and analyze large data sets.

We believe that citizen science based tools —open source software coupled
with low-cost do-it-yourself hardware— can help to close the gap between sci-
ence and citizens in the oceanographic field. As the public is actively engaged
in the analysis of data, the research also provides a strong avenue for public
education.

This is the objective of this thesis, to demonstrate how open source soft-
ware and low-cost do-it-yourself hardware are effectively applied to oceano-
graphic research and how can it develop into citizen science. We analyze
four different scenarios where this idea is demonstrated: an example of us-
ing open source software for video analysis where lobsters were monitored; a
demonstration of using similar video processing techniques on in-situ low-cost

iii



iv

do-it-yourself hardware for submarine fauna monitoring; a study using open
source machine learning software as a method to improve biological observa-
tions; and last but not least, some preliminar results, as proof of concept,
of how manual water sampling could be replaced by low-cost do-it-yourself
hardware with optical sensors.
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També vull agrair a en Maxi de l’Institut de Ciències de Mar (ICM) i la
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última hora de la tarda al despatx. Si haguessin existit els crowdfundings lla-
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Chapter 1

Introduction

1.1 The need to monitor and manage aquatic ecosys-
tems

Water is the most important resource for living on planet Earth, covering
more than 70% of its surface. The oceans represent more than 97% of the
planet total water and they are where more than the 99.5% of the living be-
ings are concentrated (Gleick et al., 1993; Mockler, 1995). A great number of
ecosystems depend on the health of these oceans; their study and protection
are necessary. In this line, on the political front, the United Nations General
Assembly, in December 2003, proclaimed the years 2005 to 2015 as the Inter-
national Decade for Action ‘Water for Life’ (Nations, 2003), to protect and
manage water.

Protecting and managing aquatic ecosystems is a challenging task. These
environments are characterized by an extraordinary mix of human activities:
tourism, fishing and industry (e.g., petrochemical plants and aquaculture).
Given the frequently conflicting interests between conservation and exploita-
tion, the fate of aquatic ecosystems is often a hot political issue. The attitudes
and values of stakeholders in environmental issues are an essential part of the
stewardship of conflicting environments. New policies concerning environmen-
tal resources should have citizens’ support and consider public attitudes from
the beginning.

The development of policy is becoming more complex with larger datasets
required to support the assessment of impacts on whole ecosystems over long
periods of time. For example, many years of data collected over wide ge-
ographical areas can be required to assess the impact of different pressures
(e.g., tourism, litter or fishing) on ecosystem health for the Marine Strategy
Framework Directive (Olenin et al., 2010). The funding needed for data collec-
tion is considerable and limited, so it is important to look at new cost-effective
ways of obtaining and processing marine environmental data.

1



Chapter 1. Introduction 2

Turbulent 
patch size

Individual 
movement

Molecular 
processes

Langmuir
Cells

Internal, Inertial
&

Solitary waves

Plankton
migration

Phytoplankton
blooms

Coastally Trapped 
Waves

Seasonal MLD &
Biomass cycles

Fronts, Eddies & 
Filaments

Mesoscale
Phenomena

Synoptic Storms
River outflows

Sediment resuspension

Rossby
waves

ENSO

Decadal Oscillations
Fish regime shifts

CLIMATE

1 sec 1 min 1 hour 1 day

Diurnal

1 week 1 month 1 year 10 years 100 years

1 mm

1 cm

1 dm

1 m

10 m

100 m

1 km

10 km

100 km

1000 km

10000 km

Temporal scales

(H
o

ri
zo

n
ta

l)
 S

p
at

ia
l 

sc
al

es S
u

rf
ac

e
T

id
es

In
te

rn
al

T
id

es

S
u

rf
ac

e
W

av
es

Figure 1.1: Time and space scales comparison of several natural ocean pro-
cesses. Adapted from Dickey and Bidigare (2005).

1.2 Observing ocean processes: sampling strategies

During the nineteenth century oceanography consisted on measurements and
models from exploratory, mapping and sampling. It has led to recognize the
time-dependent complexity of processes that occur within the oceans (Person
et al., 2007). Earth and its oceans are not static, they have a dynamic behavior
at several scales, both temporal and spatial, as can be seen on figure 1.1
(Dickey and Bidigare, 2005).

In any plan to design the strategy to monitor ocean processes, one of the
first questions to address is the number of field samples to measure and the
sampling frequency to obtain them. In many cases the answers to these ques-
tions are based mainly in logistic and operational restrictions (e.g., maximum
number of samples that it is possible to process analytically, instrumental re-
quirements, or cost of data transmission). However, it is important to take
into account the principles of Information Theory in order to avoid potential
artifacts derived from improper sampling designs.

At present, there is a clear limitation on the sampling capabilities (see
figure 1.2).
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Figure 1.2: Comparison of the sampling frequencies in conventional environ-
mental observations with the cut-off frequencies that would be needed to avoid
aliasing.

According to figure 1.1 the time scales for ocean processes cover from sec-
onds to centuries, which corresponds in the frequency domain to a frequency
range of 10−2–10−10 Hz. Sampling rates in conventional long term monitoring
programs are usually monthly or weekly and exceptionally daily (i.e., sampling
frequencies in the range of 10−7–10−4 Hz), which clearly may induce aliasing
artifacts according to the bandwidth of the observed processes.

To avoid aliasing, it would be necessary to implement analog anti-aliasing
filters with cut-off frequencies in the range 10−7–10−4 Hz, several orders of
magnitude below the lower limit of the present technology —currently it is
difficult to implement low-pass filters with cut-off frequencies below 10−2 Hz.

The only feasible solution at present is to develop observational infrastruc-
tures that may increase significantly the conventional sampling capabilities.
At present two main solutions have been promoted:

• The implementation of complex (and costly) observatories with the most
advanced technologies, particularly, those based on underwater cabled
networks (figure 1.3 left). There are several examples of this type of ap-
proaches around the world, among them: Neptune from Canada (Barnes
et al., 2008), Ocean Observatories Initiative (OOI) from USA (Chave
et al., 2009), Monterey Accelerated Research System (MARS) from USA
(Massion and Raybould, 2006), European Multidisciplinary Seafloor and
water-column Observatory (EMSO) from Europe (Best et al., 2014).
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Figure 1.3: Comparison between observational infrastructures. Left: Complex
underwater observatories. Right: “Citizen observatories”.

• The implementation of Citizen Observatories, based on volunteer par-
ticipation (figure 1.3 right), which will be commented in the following
section.

1.3 Citizen science, enhancing observational capabili-
ties in oceanography

Citizen observatories are a new concept of research infrastructure that is being
promoted around the world and Europe in particular (Citizens’ Observatory,
2015). Citizen observatories are platforms that integrate the latest informa-
tion technologies to digitally connect citizens, improving observation skills for
developing a new type of research known as Citizen Science1.

Citizen science has the potential to increase the knowledge of the environ-
ment, and aquatic ecosystems in particular, through the use of people with
no specific scientific training to collect and analyze large data sets.

1The term citizen science was defined as “scientific work undertaken by members of the
general public, often in collaboration with or under the direction of professional scientists
and scientific institutions” by the Oxford English Dictionary in 2014.
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Until recently, citizens had a passive role in science, being generally at
the end of the information chain. In reality, local communities embody a rich
source of historical knowledge —commonly more extensive and/or nuanced
than that held by the local authority— as well as having the potential for
providing dynamic, higher resolution data (Wrigley, 2014). Crowd science
projects are able to draw on the effort and knowledge inputs provided by
a large and diverse base of contributors, potentially expanding the range of
scientific problems that can be addressed at relatively low cost, while also
increasing the speed at which they can be solved (Franzoni and Sauermann,
2014).

There is a recognized awareness of the need to meaningfully engage so-
ciety in efforts to tackle marine conservation challenges (Lotze et al., 2011).
The value of citizen science has been widely recognized by national govern-
ments (Pocock et al., 2014), international bodies and funding agencies (Hyder
et al., 2015). A white paper has been developed on the future of European
citizen science and the United Nations Environment Programme has stated
that citizen science is an essential means of achieving sustainability (Au et al.,
2000).

The number of projects globally that engage the public in scientific research
has dramatically increased in recent years (Conrad and Hilchey, 2011). Some
examples of existing citizen science programs, for aquatic ecosystems and other
subjects, are:

• Secchi Dip-In (Lee et al., 1997) is a demonstration of the potential of
volunteer monitors to gather environmentally important information on
lakes, rivers and estuaries. The concept of the Dip-In is simple: in-
dividuals in volunteer monitoring programs take a transparency mea-
surement on one day during the weeks surrounding Canada Day and
July Fourth. Individuals may be monitoring lakes, reservoirs, estuar-
ies, rivers, or streams. These transparency values are used to assess the
transparency of the volunteer-monitored lakes rivers and estuaries in the
United States and Canada.

• “USGS iCoast - Did the Coast Change?” (Liu, 2014) is a USGS research
project to construct and deploy a citizen science web application that
asks volunteers to compare pre- and post-storm aerial photographs and
identify coastal changes using predefined tags. This crowdsourced data
will help USGS improve predictive models of coastal change and educate
the public about coastal vulnerability to extreme storms.

• Creek Watch (Kim et al., 2011) is an iPhone application that enables the
user to help monitor the health of his local watershed. The user can take
pictures of waterways using the Creek Watch application and report how
much water and trash he can see. Data is aggregated and shared with
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water control boards to help them track pollution and manage water
resources.

• The Citclops project (Wernand et al., 2012) aims to develop systems to
retrieve and use data on seawater color, transparency and fluorescence,
using low-cost sensors combined with people acting as data carriers, con-
textual information (e.g., georeferencing) and a community-based Inter-
net platform. Methods are being developed to rapidly capture the op-
tical properties of seawater, e.g., color through Forel-Ule observations,
and transparency through a variant of the Secchi disc. People will be
able to acquire data taking photographs of the sea surface on ferries or
other vessels, on the open sea or from the beach.

• The Quake-Catcher Network (Cochran et al., 2009) is a collaborative
initiative for developing the world’s largest, low-cost strong-motion seis-
mic network by utilizing sensors in and attached to internet-connected
computers. The Quake-Catcher Network can provide better understand-
ing of earthquakes, give early warning to schools, emergency response
systems, and others. It also provides educational software designed to
help teach about earthquakes and earthquake hazards.

• Wildlife@Home (Desell et al., 2013) combines both volunteer computing,
where people volunteer their computers to different computing projects,
and crowdsourcing, where people volunteer their brain power, to aid in
the analysis of a vast amount of video. Wildlife@Home is used to com-
pare the results of preliminary motion and feature detection algorithms
to the validated observations made by users.

• Regarding the classification of still images, GalaxyZoo (Lintott et al.,
2008) has had great success in using volunteers to classify galaxies in
images from the Sloan Digital Sky Survey; and PlanetHunters (Fischer
et al., 2012) has been used to identify planet candidates in the NASA
Kepler public release data. Snapshot Serengeti has been created to clas-
sify images from camera traps in the Serengeti National Park (Hines
et al., 2015).

• Wrigley (2014) proposes a core citizens’ observatory theme by deploying
local citizens as “social sensors” and engaging them in citizen science. To
this end, two approaches have been developed: an Android phone app
and a Raspberry Pi2 sensing device. The former allows static sensor
readings (e.g., gauge board levels), qualitative reports and photographs
to be submitted. The latter provides a low-cost, mobile device that
records atmospheric conditions (e.g., temperature, barometric pressure

2More information about the Raspberry Pi is shown in chapter 4.
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and luminosity) as well as a means of estimating river flow using the
Raspberry Pi camera module.

• The Zooniverse (Borne and Team, 2011) is a citizen science web portal
run by the Citizen Science Alliance. Volunteers contribute for free to
projects from astronomy, ecology, cell biology, humanities and climate
science.

Within the citizen science framework there are different schemes of collab-
oration:

Crowdsourcing is the process of obtaining needed services, ideas, or content
by soliciting contributions from a large group of people, and especially
from an online community, rather than from traditional employees or
suppliers. It combines the efforts of numerous self-identified volunteers
or part-time workers, where each contributor of their own initiative adds
a small portion to the greater result.

Do-It-Yourself (DIY) is the concept in which we may include all kind of
initiatives of open source hardware and software tools and methods to
generate knowledge and share data. Although it is a very appealing
collaboration approach, it is well known from existing studies of DIY
technologies (Krebs, 2010) that the ability to actively participate in DIY
activities requires free time, knowledge, and social capital to access or
buy equipment, etc. These aspects can make these practices exclusionary
on multiple levels. Some people are excluded because of confidence,
others on the basis of education and yet other because of financial issues.

Do-It-Together (DIT) is a concept that has been used mainly on the devel-
opment of large open source projects, but it can be extended to citizen
science as well. Do-it-together activity, as its name, is the kind of activ-
ity which single user cannot accomplish. It needs many users to work
together at the same time. Alternative activity needs multiple users’
effort, each one’s activity is connected to former ones (Gao-feng et al.,
2006).

The DIY-DIT Movement promotes important values, such as curiosity,
tinkering, collaborative problem-solving, and self-efficacy. Apart from that, it
is important for a number of reasons (National Economic Council and Office
of Science and Technology Policy, 2015):

1. Students are engaged easily in DIY-DIT projects, revitalizing career and
technical education and inspiring students to excel in Science, Technol-
ogy, Engineering, and Mathematics (STEM).
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2. Adults may gain, participating in making their own DIY devices, the
skills they need for jobs in fields such as design and advanced manufac-
turing.

3. DIY-DIT activities lower the barriers to entrepreneurship in hardware
and manufactured products, in the same way that cloud computing and
open source software have lowered the costs of launching an Internet-
based startup.



Chapter 2

Objectives

In a citizen science based monitoring scenario, the information donated vol-
untarily by citizens can be used as a low-cost labor way to find solution to
the sampling challenges stated in the previous section. We believe that citizen
science based tools (open source software coupled with low-cost do-it-yourself
hardware) can help to close the gap between science and citizens in the oceano-
graphic field. As the public is actively engaged in the analysis of data, the
research also provides a strong avenue for public education. We could be able
to perform outreach to future oceanographers by providing accessible tools to
volunteers as well as by engaging computer scientists in the projects’ open
source code development.

In this thesis several monitoring scenarios in different marine related
disciplines will be analyzed to implement, in each case, solutions based
on citizen science instruments (DIY) and/or data processing chains. The
main goal is to demonstrate how citizen science tools —based on open
source software and low-cost hardware— are effectively applied to solve
the requirements for monitoring the analyzed processes.

In this thesis, four different scenarios are tackled:

• On chapter 3, video images from laboratory that were previously man-
ually inspected are now processed using open source software. Manual
analysis is substituted by automatic analysis, open to be reused and
improved by other scientists or any passionate about video image pro-
cessing.

• Chapter 4 addresses the analysis of video footage from an underwater
camera that has been before analyzed using proprietary software on a
desktop workstation. On our approach the video is processed by open
source software on a small device that can be purchased on a electronics

9
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store for just 35USD, allowing any one to have its own observational
node.

• Chapter 5 involves an innovative research that has not been performed
before: the use of time-series of biological measurements to predict harm-
ful algal blooms on the Alfacs Bay. The computation is performed using
open source that can be reviewed an improved by the community.

• Chapter 6 goes one step forward than the previous chapter. The labo-
ratory analysis used as data source for the prediction is now replaced by
hypothetical low-cost do-it-yourself optical sensors.



Chapter 3

Automated video-image
processing for animal behaviour
analysis using open source tools

This chapter is based on the previous author’s work:

Automated video-image analysis for the analysis of the behaviour
of deep-water lobsters (Nephrops norvegicus)
Conference talk and proceedings in 3rd MARTECH International Work-
shop On Marine Technology, Vilanova i la Geltrú (Spain), 2009.

Video-image processing applied to the analysis of the behaviour of
deep-water lobsters (Nephrops norvegicus)
Finalist in student poster competition in IEEE/OEE Oceans Conference
and Exhibition, Oceans’10, Sydney (Australia), 2010.

3.1 Introduction

The objective of this chapter is to introduce open source video processing
systems as a method to improve biological observations. In this case, under
laboratory experimental conditions.

One aspect of animal behavior consists of movement patterns linked to
physical or biological environmental variables, which may be of a cyclic nature.
Rhythmic behavior, in particular, encompasses all motor acts that involve a
rhythmic repetition coupled to a cyclical variable (Naylor, 1988; Nusbaum and
Beenhakker, 2002). Among rhythmic behavioral processes, locomotion is the
most widely studied indicator in biological clock regulation research (Naylor,
1988; Ortega-Escobar, 2002).

Activity rhythms of important fishery resources are interesting for its ef-
fect on their catchability (Naylor, 2005). The laboratory study of activity

11
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rhythms in deep water species is to date limited by technical constrains re-
lated to the peculiar animals’ environment (Menesatti et al., 2009). A widely
adopted methodological solution has been to date the use of infrared (IR)
actography (Aguzzi et al., 2008)). But highly corrosive salt water impairs the
correct functioning of hardware equipment made by IR emitting and detecting
barriers. In this context, video image analysis represents a more simple hard-
ware solution when a proper level of automation image processing is acquired
(Aguzzi et al., 2009a).

Video image analysis can be efficiently used to disclose the period of ac-
tivity rhythms in relation to the day-night cycle over a long period of time
in laboratory controlled conditions (Aguzzi et al., 2004). The video image
analysis of footage depicting the behavioral pattern of species in relation to
time is to date of growing interest for neuroethology and biomedicine (Aguzzi
et al., 2009b). But when data volumes grow dramatically, manual analyses
become completely impractical in many domains. Hence, analysis requires
automation (Fayyad et al., 1996).

In this chapter, we show the results of using open source software to apply
automated data processing to a set of videos previously used to manually mon-
itor the period of activity rhythms of the deep-water Norway lobster Nephrops
norvegicus, a species of elevated commercial fishery value.

3.2 Materials and Methods

3.2.1 Data description

On the original study of Aguzzi et al. (2004), 28 adult lobster males of the
species Nephrops norvegicus were monitored. These individuals were collected
by a commercial trawler in the western Mediterranean Sea a few miles off
Barcelona. Each animal was individually housed in a plastic tank of 40×25×
20 cm, supplied with an external pump providing the appropriate circulation
and filtration of water. The animals were not fed during the experiments to
prevent interference because of food presence-absence, which directly affects
locomotor activity and metabolism.

Infrared-sensitive video cameras were located over the tanks, pointing ver-
tically downwards to obtain a view from the top. Each camera had three
complete tanks on its field of view. A constant source of infrared light illu-
minated the tanks also from above. The video cameras were connected to a
time-lapse VHS video tape recorder, capturing one frame every 1.7 seconds
and storing them as a 25 frames per second footage.

For our study, two of the tapes (for a total of six tanks) were digitized
by means of Pinnacle Studio application, producing two video files encoded
with the DVSD codec, AVI container and a resolution of 720 × 576 pixels. A
sample is shown in figure 3.1.
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Figure 3.1: Sample frame from one of the VHS tapes after digitization.

3.2.2 Processing

All the video image processing described on this section was performed in C,
making use of the open source library OpenCV (Bradski, 2000; Pulli et al.,
2012). OpenCV is a library of programming functions for real time computer
vision; initially an Intel Research initiative launched in 1999, and taken over
in 2012 by the non-profit foundation OpenCV.org.

The footages were first split according to position and size of the tanks,
obtaining three new video streams per original video, in order to analyze each
tank separately.

Next, a Gaussian smoothing was applied to each video to reduce the noise
level, at expenses of reducing the sharpness of the image. Preliminary tests
showed that this trade-off improved the results of the edge-detection algorithm
used posteriorly.

Before choosing a motion quantification technique, the characteristics of
the video must be analyzed. Motion detection of objects moving over a sce-
nario consists on obtaining a model of the background, with no foreground
objects present. Any change on this modeled background is an indicator of
presence, i.e., there is a foreground object on it. When the scenario is a static
scene, e.g., an empty room under the effect of invariable light conditions, a
single frame is enough to create the background model. In our case we did
not have a completely static background, as we had random appearances of:

• Bubbles produced by the water refreshing circuit.
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• Reflections of artificial light sources on the waves of the water surface.

• Snow noise due to the quality of the original VHS tapes, that was not
removed during the smoothing preprocessing.

• Non-uniform illumination, i.e., areas of low contrast in some parts of the
tanks.

Therefore we needed a more complex model than a single static frame. We
implemented a technique known as codebook background subtraction (Kim
et al., 2005; Bradski and Kaehler, 2008), which creates dynamic background
models. Codebook background subtraction works at a pixel level. When the
values of a pixel fluctuate between a defined margin for a set period of time,
a codebook is created around these values. Any future pixel value inside this
codebook is considered background, and the rest foreground. If the new values
of the pixel are repeated along a set time instead of the ones of the codebook,
the old codebook is deleted and a new one is created. Therefore, the whole
set of codebooks of all the pixels represent a compressed form of background
model for a long image sequence, and allows to capture structural background
variation due to periodic-like motion over a long period of time under limited
memory. Figure 3.2 illustrates this concept.

Once the background is modeled, each frame is transformed to a bina-
rized image with black background and white foreground objects. In order to
eliminate non interesting small objects, such as bubbles or waves, the image
is subjected to a process of erosion-dilation (Serra, 1983). This process has
also the effect of smoothing the contours of the objects, as exemplified on
figure 3.3.

On each binarized frame, cleaned after the erosion-dilation process, all the
objects are detected with a contour finding algorithm (Suzuki et al., 1985),
where a contour is defined by the edge between a black zone and a white zone.
The object with the biggest contour is assumed to be the lobster. The amor-
phous contour of the lobster is simplified to a bounding box (see figure 3.4),
and the center of the box is calculated, assuming that it is approximately the
center of the lobster. A list with the centers of the lobster on each frame is
stored to a log file.

From this point forward, the rest of the processing was performed in
Python with the use of NumPy and SciPy (Jones et al., 2001; Oliphant, 2007),
ingesting the log file created on the previous step. SciPy is a Python-based
ecosystem of open source software for mathematics, science, and engineer-
ing. NumPy is one of the core packages of SciPy, supporting large multi-
dimensional arrays and matrices and providing high-level mathematical func-
tions to operate on these arrays.

On the original manual analysis of the videos, motion was quantified by
counting how many times the individual crossed from one half of the tank to
the other half, in periods of 30 minutes. On our study, motion is quantified
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Figure 3.2: Codebooks delimit intensity values repeated over time, considered
“background”. A box is formed to cover a new value and slowly grows to
cover nearby values; if values are too far away then a new box is formed.
With permission from Gary Bradski c©2008 (Bradski and Kaehler, 2008).

Figure 3.3: Example of erosion-dilation. The upward outliers are eliminated
as a result. With permission from Gary Bradski c©2008 (Bradski and Kaehler,
2008).
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Figure 3.4: Bounding box automatically created around the main foreground
object, i.e., the lobster. The center of the box is used as indicator of the
specimen position

Figure 3.5: Complete video processing chain.

by measuring the euclidean distance between the centers of the lobster from
frame to frame. To ease the comparison between the two methodologies, the
new data was rebinned to periods of 30 minutes by calculating the sum of
distances of this period.

Initially we implemented an alternative approach to quantify motion, but
it was discarded in favor of the aforementioned methodology as it provided
best results overall. On this alternative approach, the center of the objects
was not detected and stored. Instead, the difference between two consecutive
binarized images was quantified. This difference was stored to a log file, and
the processed following the instructions above. Figure 3.6 shows a time series
where both methodologies are compared, with also the original data. More
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Figure 3.6: Sample of time series of relative motion quantified according to
three different methodologies for the same video. Method 2 shows a more
marked periodicity than the other two, particularly on the second half of the
series. Original: original study. Method 1: based on the difference of binary
images. Method 2: based on the difference between centers. This is the
methodology chosen for our study.

information about this alternative approach can be found in appendix B.
Measurement uncertainty and noise sometimes make it difficult to spot

oscillatory behavior in a signal, even if such behavior is expected. The auto-
correlation1 sequence of a periodic signal has the same cyclic characteristics
as the signal itself. Thus, finding the peaks in the autocorrelation can help
verify the presence of cycles and determine their durations (Rosenfeld and
Troy, 1970). We calculated the autocorrelation for our time series, and then
relative maxima of the autocorrelation to find the peaks.

Prior to the autocorrelation, the mean was subtracted from the signal and
it was smoothed using a median filter to improve the peak detection.

The full processing chain is shown in figure 3.5.

3.3 Results

We had access to the original data of the processed videos —i.e., the time series
measuring how many times the individuals crossed from one half of the tank
to the other half—. The processing applied to our metrics of motion —i.e., the
output of the image processing chain— was also applied to the original data
for the sake of comparison. The peaks found on the autocorrelation for each

1Autocorrelation is the cross-correlation of a signal with itself at different points in time.
In signal processing, cross-correlation is a measure of similarity of two series as a function
of the lag of one relative to the other. In an autocorrelation there will always be a peak at
a lag of zero, and its size will be the signal power.
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Peaks locations (hours)

Tank ID Original data New data

a 23.5 10.5, 23.5
b 23.5 17.5, 22.5
c 16.5 23
d 24 19.5, 24
e 13 6.5, 13.5, 23.5
f 12, 24 6, 12.5, 19.5

Table 3.1: Local maxima (peaks) detected on the autocorrelation of the motion
signal for the original manual methodology and the new automated method-
ology.

tank of the videos are shown on table 3.1. For each tank, the peak detected
corresponds to the periodicity of the signal. A periodic signal repeats itself
over time. Detection of a single peak (original data cases a–e, new data case
c) means that the signal has single periodicity. Detection of multiple peaks
(original data case f, new data cases a, b, d–f ) means that the signal has
multiple periodicities, i.e., the signal has more than one underlying periodic
component. This is difficult, if not impossible, to spot by eye (Leis, 2011).

3.4 Discussion

According to the original article, the individuals were found to follow three
different possible patterns:

• Circadian locomotor rhythmicity with recorded significant periods be-
tween 20 and 25 h.

• Ultradian periodicity of around 12 h.

• Ultradian periodicity of around 18 h.

Table 3.2 expresses table 3.1 assigning the peaks to the closest of the known
circadian and ultradian periodicites.

Cases a, b and d show the same 24 hours circadian periodicity than the
original study. Additionally, ultradian periodicities were found on the new
data: what it seems a 12 hours periodicity for a and 18 hours for b and d.

Case e (figure 3.8) has a 12 hours ultradian periodicity on both method-
ologies, but also a 24 hours circadian periodicity was found on the new one.
Additionally, a periodicity of 6.5 hours was detected.

Case f has a 12 hours ultradian periodicity on both methodologies. A clear
24 hours circadian periodicity was only found on the original data, while the
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Figure 3.7: Detail of the autocorrelation for video a. A peak at ∼24 hours
indicates a circadian periodicity on the original data. Peaks at ∼24 and ∼12
hours on the new data indicate circadian and ultradian periodicities respec-
tively.

new data shows it at 19.5 hours. It could be considered a 18 hours ultradian
case. As in case e, a periodicity of 6 hours was detected also.

Case c (figure 3.7) showed what it could be considered a 18 hours ultradian
periodicity (16.5 hours real) in the original data, while it was a 24 hours
circadian periodicity (23 hours real) with the new data.

To conclude:

• From the 7 periodicities on the original data, 5 of them have been also
detected by the automatic methodology.

• For the other 2 peridocities of the original data, alternative periodicites
were found on the new data (e.g., a 24 hours ultradian instead of a 18
hour circadian.)

• 4 more periodicities were found on the new data compared to the old
data.
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Figure 3.8: Detail of the autocorrelation for video e. A peak at ∼12 hours
indicates an ultradian periodicity on the original data. Peaks at ∼24 and ∼12
hours on the new data indicate circadian and ultradian periodicities respec-
tively.

3.5 Conclusions

Although according to the original publication the previous manual methodol-
ogy was enough to detect the circadian rhythms, part of the information about
the behavior is lost (e.g., if the lobster moves without crossing the middle of
the tank, it is not taken into account). The proposed automatized method-
ology allows a precision at frame level and quantifies every single movement
of the individual. Therefore, the new system showed not only similar results,
but periodicities not found before.

Furthermore, the processing time is reduced from hours of manual inspec-
tion to minutes of CPU power.

All these benefits were possible using a standard PC and available free
open source libraries, therefore a zero-cost solution. The man-hours needed
to implement the full processing chain were also positively affected by reusing
these public domain implementations of published algorithms, not “reinvent-
ing the wheel”, as addressed by Spinellis and Szyperski (2004).

The system could grow in complexity, e.g., showing daily heatmaps to
monitor where each specimen spends most of the time, which could lead to
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Periodicity

Tank ID Method 24 h 18 h 12 h

a
Orig. X
New X X

b
Orig. X
New X X

c
Orig. X
New X

d
Orig. X
New X X

e
Orig. X
New X X

f
Orig. X X
New X X

Table 3.2: Allocation of the values on table 3.1 to circadian and ultradian
periodicities.

conclusions that would help to improve the monitoring methodology itself.
This added processing and data visualization could still be performed us-
ing only open source solutions, e.g., the Python plotting library matplotlib
(Hunter, 2007).

The automation of the monitoring is therefore contributing to be able to
spend more time understanding the data instead of collecting the data.

Regarding how to involve citizens on this research, the motion detection
algorithm could be complemented with ground truthing performed by volun-
teers. The results shown in this work have not been manually verified due to
the time requirements this process would need —much longer than the original
publication, as we are demanding more detail—. This verification could be
split between a pool of volunteers, each one visually analyzing a short segment
of video according to some guidelines to keep subjectivity to a minimum.

Another sample case of participation would be the manual inspection of
undesired effects (e.g., the bubbles of the water circulation system) that are
big enough to be misclassified as the subject of interest. This cases are seen
by the system as a big change of the individual’s position between two frames,
as if the lobster had instantaneously “jumped” from one part of the tank to
another. This cases could be tagged as suspicious, and then the problematic
frames would then be delivered to volunteers (e.g., posted online) that would
easily identify the real position of the lobster and manually select its location.
In addition to that, if the data were made public alongside the code, users
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with software coding knowledge could try to implement new motion detection
algorithms and compete between them for the most robust solution.



Chapter 4

In-situ video-image processing
using low cost embedded

systems and open source tools

This chapter is based on the previous author’s work:

Design of a sensor network with adaptive sampling
Conference talk and proceedings in iEMSs 2008 Conference (The In-
ternational Environmental Modelling and Software Society Conference),
Barcelona (Spain), 2008.

4.1 Introduction

Chapter 3 introduced the use and advantages of automated video-analysis on
a laboratory environment. The objective of this chapter is to analyze the
benefits of using similar techniques on video-footage from field recordings and
in-situ processing, and to be a proof of concept of its feasibility.

As ocean observation systems continue to grow in complexity, management
of the rapidly increasing volume of data is a recognized concern (Conway,
2006; Gilbert, 1998). The development of ocean observatories tremendously
advances the ability to collect and transmit data, producing unprecedented
levels of access to data. However, the ability to interpret this avalanche of
data, i.e., to extract meaning from artificial fields of data, has expanded much
more slowly (Woods et al., 2002). The challenge has become finding what
is informative given the scientific interests and needs in a very large field of
available data.

Furthermore, it has been shown (Akyildiz et al., 2002) that effective man-
agement of sensor resources has become an important issue on sensor networks.
Power and data-transmission bandwidth are limited resources that must be
used efficiently. An intelligent in-situ data analysis and reactive behavior can

23
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improve the management of network resources, increasing the quality of the
collected data and reducing costs (Pons et al., 2008).

Hence, there is a need for a new generation of computational theories and
tools to assist humans in extracting useful, interpreted information (knowl-
edge) from the rapidly growing volumes of digital data. One of the problems
to address is mapping low-level data (which are typically too voluminous to
easily process and understand) into other forms that might be more compact
(e.g., classified data, trends), more abstract or more useful (Fayyad et al.,
1996).

On this chapter we propose a solution for a concrete case that transforms
a continuous 24 h feed of unprocessed video of the marine soil to a segmented
video where only relevant activity is shown. Additional precomputed meta-
data attached to the video stream, automatically generated or with the help
of volunteers in the frame of citizen science, would help scientists filtering the
segments according to their needs.

4.2 Materials and Methods

4.2.1 Data description

Not having direct access to a video stream directly from submarine equipment,
we simulated this stream using stored footage. This footage was recorded by
a submarine infrared 3CCD video-camera mounted on the Real-Time Deep-
Sea Floor Permanent Observatory (Iwase et al., 2003), at 1100 m depth off
Hatsushima Island, in Sagami Bay (central Japan). The period of the record-
ing lasts one week, from 09-04-1999 to 16-04-1999, in time-lapse mode with a
frame each 4 s. During this time there was a constant source of illumination
of six white-light lamps.

Videos were stored on VHS videotapes and posteriorly digitized (Aguzzi
et al., 2009a). The video format we had access was in AVI container, MPEG-
2 Video codec and a resolution of 720 × 480 pixels. A sample is shown in
figure 4.1.

4.2.2 Processing

The video image processing described on this section is very similar to the pro-
cessing performed on chapter 3, using C with the open source library OpenCV
(Bradski, 2000; Pulli et al., 2012).

In-situ hardware

Instead of performing the processing on a PC, though, it has been fully exe-
cuted on a Raspberry Pi. The Raspberry Pi is a credit-card sized computer
able to run a full-pledged OS like Raspbian (a GNU/Linux distribution based
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Figure 4.1: Sample frame from the digitized VHS footage.

on Debian). The model used was the Raspberry Pi 2 Model B, with a price
at the moment of the writing of 35USD.

Because of its form-factor, connectivity capabilities and low power con-
sumption, it is gaining popularity as scientific in-situ processing platform.
For example:

• As a Wireless Sensor Network (WSN) and SensorWeb node. Vujovic and
Maksimovic (2014) consider that the Raspberry Pi brings the advantages
of a PC to the domain of sensor networks:

“It is the perfect platform for interfacing with a wide variety
of external peripherals. It remains an inexpensive computer
with its very successfully usage in sensor network domain and
diverse range of research applications.”

• Neves and Matos (2013) developed an autonomous driving system ca-
pable of following another vehicle and moving along paths delimited
by colored buoys. A pair of webcams was used and, with an ultrasound
sensor, they also implemented a basic frontal obstacle avoidance system.

• As a platform for monitoring water level, velocity and rain intensity
(Lanfranchi et al., 2014). A large number of sensors provided spatial
patterns and temporal evolution and real-time information for decision-
making.

• On field of citizen science, it was used by Wrigley (2014) as a low-
cost, mobile device that records atmospheric conditions (temperature,
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Figure 4.2: Raspberry Pi with an attached camera module. Image from
Adafruit Industries (CC BY-NC-SA 2.0).

barometric pressure, luminosity, etc.) as well as a means of estimating
river flow using the Raspberry Pi camera module (figure 4.2).

• Also regarding citizen science, Gordienko et al. (2015) claim that the
Raspberry Pi allows to go from the passive “volunteer computing” to
other volunteer actions like “volunteer measurements” under guidance
of scientists.

Processing chain

The footage is first subjected to a preprocessing of masking, so that certain
parts of the image will not be processed (e.g., the parts with the changing
overlay time and date). Next, the image is transformed from the RGB color
space to the HSV color space (Smith, 1978). This transformation improves
the performance of the later step of background subtraction mentioned be-
low. Empirically, most of the variation in background tends to be along the
brightness axis, not the color axis (Bradski and Kaehler, 2008).

Histogram equalization, a method of contrast adjustment using the image’s
histogram, was studied as a part of the preprocessing. Histogram equalization
is an old mathematical technique; its use in image processing is described
in various textbooks (Jain, 1989; Russ, 2011). In our case, the equalization
modified the values of hue and saturation in a not homogeneously across the
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(a) Random objects of non-interest. (b) Contour of detected snail.

Figure 4.3: Zoomed samples of artifacts (horizontal lines) produced during the
digitization of the VHS tape, affecting the background subtraction method.

image, impacting the classification algorithm used at the end of the processing
chain. Therefore, it was discarded and is not used in this study.

With the aim to identify when fauna appear on the image, the next step
is the implementation of a background subtraction method. In this case, in-
stead of using the codebook background subtraction explained on page 14 and
used on the previous chapter, the less computer intensive average background
method was used (Toyama et al., 1999; Bradski and Kaehler, 2008). This
method basically learns the average and standard deviation of each pixel as
its model of the background for each channel (hue, saturation and value). In
our case, for each frame to process, the model is updated with the previous 100
frames (i.e., a buffer of images is needed for this technique). Then the frame
is compared to the model: if the pixel values are out of any of the thresholds
of the model, the pixel is considered foreground. Otherwise, it is classified as
background.

After binarizing the image using background subtraction, we observed that
because of the digitization of the VHS tape, there were artifacts in the form of
horizontal lines. Additionally, in many cases we were obtaining open contours
instead of filled blobs. These effects can bee seen on figure 4.3.

These artifacts are compensated on the binarized image by applying a
filling algorithm proposed by Martin Cirera et al. (2010). A 3 × 3 pixels
window sweeps the image, pixel by pixel. If two pixels on opposite borders
are white, and they would form a straight line (horizontal, vertical or diagonal)
if the center pixel was also white, then the center pixel is painted white if it
wasn’t.

Next, we apply a contour finding algorithm (Suzuki et al., 1985), and we
keep track only of the objects with an area bigger than a given threshold
(defined empirically by trial and error) to discard most of the noise produced
by marine snow (Alldredge and Silver, 1988).

For each object, the corresponding HSV region is extracted from the orig-
inal image. Then, these HSV objects are classified with the following method.
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Figure 4.4: Complete video processing chain.

Three different species of interest where manually identified before the pro-
cessing. Three sample images for each species were stored as reference. During
the processing, each detected object is matched against the stored reference
images comparing the histograms using the χ2 distance as measure of similar-
ity (Swain and Ballard, 1991; Schiele and Crowley, 1996).

Given that both histograms of each pair being compared have the same
n bins, and representing them as x = [x1, ..., xn] and y = [y1, ..., yn], the χ2

distance d is defined as d(x, y) =
∑

((xi−yi)2/(xi +yi))/2.Note that d(x, y) is
symmetric with regards to x and y. Before performing this calculation, both
histograms need to be normalized, i.e., their entries sum up to one.

The object is labeled as the species with the best match if the similarity
measure surpasses a given threshold. If it does no surpass the threshold,
it is labeled as unknown species. This information is logged on a text file,
associating frame number with the species detected in the frame. The full
processing chain is shown in figure 4.4.

4.3 Results

The Rasberry Pi was able to process the video at real-time speed. Figure 4.5
shows the result of applying the motion detection and contour finding algo-
rithms to two sample frames. The three different species included on the
classificator can be seen appearing on these two frames. Table 4.1 shows the
results of the classification of 15 sample objects, according to the last part of
section 4.2.2. Each species has been correctly labeled in this sample.

4.4 Discussion

The results on the previous section set the first step on demonstrating the
viability of setting up an in-situ video processing system. The Raspberry Pi,
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Table 4.1: χ2 scores from comparing the histogram of 5 sample images of each
specie against the reference histograms. The bold value of each row is the best
(lower) score.
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(a) Sample frame with two species. (b) Detected contour of the species on sub-
figure (a).

(c) Sample frame with two species. (d) Detected contour of the species on sub-
figure (b).

Figure 4.5: Two sample frames and the contour of the species detected in
them with the implemented processing chain.

as seen on section 4.2.2, can be used on underwater deployments. The video
file used as input could be replaced by a live feed, as both the software and
the hardware allow this possibility.

More complex video processing techniques, like the ones used by Aguzzi
et al. (2011), could be ported to the Raspberry Pi hardware, as implementa-
tions in C with OpenCV are less computationally demanding than the Matlab
equivalent (Matuska et al., 2012).

This study has not addressed the analysis of the log relating detected
species with frames, but it is a feature that opens new research lines:

• In the case systems with limited resources regarding data storage or
transmission bandwidth, the motion detection or even specific species de-
tection could be used as a decision factor between keeping/transmitting
the data or discarding it.

• On a video archiving scenario —independently of if we use the full stream
or just discontinuous segments— the log could be transformed to meta-
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data to help on the manual inspection of the videos. For example,
software would allow to navigate and filter through the video archive
according to the parameters chosen by the biologist, such as videos fea-
turing a specific species. An existing system with the same philosophy
has been documented by Schlining and Stout (2006).

• The metadata commented on the previous point could be, additionally,
a source for generating statistics and characterizing fauna behavior, sim-
ilar to the processing from chapter 3.

4.5 Conclusions

This chapter enunciated in-situ processing as one of the solutions to the in-
creasing oceanographic data acquisition capabilities. The analysis and filtering
of data on the same point where data is collected allow and optimization of
resources both technical and human.

The technical feasibility of this philosophy has been demonstrated with
one of the more complex sources of data: a video stream. Existing open
source libraries and off-the-shelf low-cost hardware are already available to
build such systems. This study implemented a simulation of a submarine
node successfully analyzing and categorizing video in real-time on embedded
hardware.

The future possibilities that this example of in-situ processing opens have
been discussed (section 4.4). As stated in previous chapters, the field of
oceanographic sciences can greatly benefit of adopting the technology already
in use in other areas. With this technology, data can be turned into informa-
tion —and therefore into knowledge— easier and with less resources.

With the mentorship of scientists, citizens living close to shallow water
masses could build and deploy their own amateur observational underwater
nodes with a limited investment. Sharing the captured preprocessed footage
with other users and classifying it interactively as commented on section 4.4
would be an unprecedented source of data for characterizing the ecosystem
that would complement the current scientific and systematic approach.
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Biological time series
forecasting based on open

source tools

This chapter is based on the previous author’s work:

Early-Warning System Based on Decision Trees for Blooms of Harm-
ful Algae
Research article submitted to PLOS ONE, October 2015.

5.1 Introduction

The objective of this chapter is to introduce open source machine learning
software as a method to improve biological observations. In this case, using
data from an existing monitoring field campaign.

Aquatic ecosystems are characterized by an extraordinary mix of human
activities, e.g.: tourism, fishing and aquaculture. Algae are a critical part of
aquatic ecosystems and, like land plants, capture the sun’s energy and support
the food web that includes fishes and shellfish. Harmful algal blooms (HABs)
are related to negative impacts to other organisms via production of toxins,
mechanical damage or oxygen depletion. HABs are often associated with large-
scale marine mortality events and with various types of shellfish poisonings
(Backer et al., 2003). Some algae produce powerful toxins which cause illness
or death in humans and other organisms. Other algae are not toxic, but affect
whole ecosystems by forming large mats that can have an adverse effect on
corals, seagrasses, and other organisms living on the sea-bottom.

The assessment of impacts of HABs on whole ecosystems over long periods
of time involves the complex processing of large databases, covering sometimes
wide geographical areas. To secure the funding needed for data collection in

32
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those cases it is important to look at new cost-effective ways of obtaining and
processing environmental monitored data.

Existing bloom forecast systems use as inputs a combination of in-situ
hydrographic, water quality, meteorological, biomass and/or taxonomic data.
These approaches rely therefore on the deployment of multiple sensing devices
or systematic field campaigns. A less costly approach, but restricted to water
masses with an extension of the order of kilometers because of its low spatial
resolution, is the use of remote sensing data.

A detailed listing of input descriptors used by existing literature can be
seen on table 5.1. Most forecasting systems use remote-sensing data (Allen
et al., 2008; Stumpf et al., 2009) or a large amount of field measurements
(Sivapragasam et al., 2010; Lee et al., 2005), in many cases to feed a specific hy-
drodynamic model of the environment under study (Zhang et al., 2013; Wong
et al., 2009), usually requiring time-consuming processes or costly equipment.
In contrast, the system proposed below only requires the input of chloro-
phyll a and concentration of algae data, and it is not adjusted to a specific
environment and its hydrodynamic characteristics. Exporting the proposed
methodology to other scenarios would not imply the deployment of complex
equipment.

In this chapter we propose a forecast system based on decision trees im-
plemented with open source software. This system uses as input a reduced
number of microscopy measurements (one measurement per harmful species).
These measurements are already being performed as part of a periodic en-
vironment monitoring; no extra infrastructure has been deployed or human
resources have been needed for the acquisition of data.

5.2 Materials and Methods

This work explores patterns of harmful microalgae variability in the Alfacs
bay (Spain), specifically, temporal patterns in series of harmful phytoplankton
species abundances sampled from a fixed station, using automatic-classification
techniques. Decision trees are used to infer the probability of having a toxic
HAB on the following one, two or three weeks, respectively.

5.2.1 Data description

The data used in this work were collected through the monitoring program
on water quality of shellfish growing areas in Catalonia conducted by the In-
stitute of Agrifood Research and Technology in 1998–2003 and 2006–2010.
Water samples were taken approximately every week, and from these samples
microalgae species were quantified. Seven dinoflagellate species and one di-
atom genus (Pseudo-nitzschia) were selected for this study, based on their as-
sociation with shellfish closures in Catalonia. Hydrographic descriptors (tem-
perature, salinity and dissolved oxygen concentration) were also measured
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Reference

Input descriptors a b c d e f g h i j k l m

T
a
x
o
n

om
ic

b
a
se

d

Algal concentration
of single species

X X

Algal concentration
of harmful species

X X

Algal concentration
of non harmful
species

X

Algal grow rate X

W
at

er
q
u
al

it
y

Nutrients (phospho-
rus, nitrate)

X X X X X X X X

Water quality (in-
cluding Chl a)

X X X X X X X X X

Biomass concentra-
tion (phytoplankton,
zooplankton)

X X X X

O
th

er
s

Water flow, turbu-
lence/stratification

X X X

Meteorology X X X X X X X
Remote sensing X X X X

Table 5.1: Comparison with other studies with respect to input descriptors:
a, this study; b, Recknagel et al. (1997); c, Zhang et al. (2013); d, Wong et al.
(2009); e, Muttil and Lee (2005); f, Allen et al. (2008); g, Stumpf et al. (2009);
h, Whigham and Recknagel (2001); i, Wei et al. (2001); j, Sivapragasam et al.
(2010); k, Lee et al. (2005); l, Anderson et al. (2011); m, Chen and Mynett
(2004).

using a portable multi-parametric probe. The complete set of descriptors (or
attributes) is therefore as follows:

• Temperature in ◦C (Temp)

• Dissolved Oxygen in % (O2)

• Salinity (S)

• Chlorophyll a in µg/l (Chl a)

• Concentration (cells/L) of algae:

– Alexandrium catenella

– Alexandrium minutum

– Dinophysis caudata
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– Phalacroma rotundatum

– Dinophysis sacculus

– Protoceratium reticulatum

– Protocentrum lima

– Pseudo-nitzschia spp.

The original sampling process was not equally distributed in time. On
some weeks the sampling was not performed; on some weeks it was performed
more than once. We preprocessed the time series by filling the missing samples
using linear interpolation and calculating the mean value on the weeks with
multiple samples.

The results of a first exploration phase indicated that the classification
is mainly driven by taxon information. Therefore, in a second phase of ex-
perimentation, parameters regarding meteorology and hydrography have been
discarded in order to make the predictor more efficient, requiring less inputs.

5.2.2 Processing

Data-driven modeling is a fast developing field in hydroinformatics (Soloma-
tine et al., 2008) consisting on finding connections between the system state
variables (input, internal, and output variables) without explicit knowledge of
the physical behavior of the system. Once the model is trained, it can be tested
using an independent data set to determine how well it can be extrapolated
to unseen data.

Past comparisons (Recknagel, 1997) between the predictive potential of
deductive and inductive learning of phytoplankton models regarding their
forecasting of harmful algal blooms showed that the application of deductive
models still seem to be restricted by a lack of knowledge, while ad-hoc induc-
tive models prove to be more predictive. Previous studies have demonstrated
that predictive models based on microbial and ecological processes in freshwa-
ter bodies are useful for developing management responses aimed at reducing
the negative consequences of algal blooms to the community (Whigham and
Recknagel, 2001; Wilson and Recknagel, 2001; Maier and Dandy, 2000; Wei
et al., 2001; Muttil and Chau, 2006). In a case similar to the one discussed
in this study, with a time series comprised of biomass of ten dominating al-
gae species and environmental driving variables over twelve years, artificial
neural networks were used to predict the succession, timing and magnitudes
of algal species, indicating that neural networks can fit the complexity and
non-linearity of ecological phenomena apparently to a high degree (Recknagel
et al., 1997).

Our early-warning system for HABs forecasting uses observations of phy-
toplankton species abundances. For each species or genus of harmful phyto-
plankton, a discrete predictor with three levels of concentration was defined:
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Species or genus Abbreviation Concentration (cells/L)

Alexandrium catenella acatenella 1,000
Alexandrium minutum amin 1,000

Dinophysis caudata dcaud 500
Phalacroma rotundatum drotund 500

Dinophysis sacculus dsacculus 500
Pseudo-nitzschia spp. psnit 200,000

Table 5.2: Concentration values set as thresholds for defining HABs. Two
species were not used to define HABs, but only to predict their occurrence.

• A threshold level based on the risk of toxin accumulation in shellfish
(Andersen, 1996; Anderson et al., 2001). The threshold values depend on
local legislation; the ones used for this study are established for shellfish
growing areas in Catalonia (Spain) and are shown in table 5.2. The
threshold level ranges from “threshold value − 10%” to “threshold value
+ 10%”. For example, for Alexandrium catenella, it would be [900–1100]
cells/L.

• A low level, which ranges between 0 and the threshold level. For exam-
ple, for Alexandrium catenella, it would be [0–900] cells/L.

• A high level, which includes values greater than the threshold level. For
example, for Alexandrium catenella, values greater than 1100 cells/L.

To improve prediction, two additional predictors, derived from the con-
centration time series, were defined and used: the trend and the accumulated
value. The trend of a parameter is defined as the sign of the derivative of a
descriptor over the last two weeks, being positive if the concentration increases
and negative if it decreases. The accumulated value is quantified as the inte-
gral of a descriptor over the last four weeks, using the composite trapezoidal
rule.

The trapezoidal rule is a technique for approximating the definite integral∫ b
a f(x)dx. The trapezoidal rule works by approximating the region under the

graph of the function f(x) as a trapezoid and calculating its area, following

that
∫ b
a f(x)dx ≈ (b− a)[(f(a) + f(b))/2]. Figure 5.1 illustrates this concept.

The composite is its repeated application along different segments of f(x),
i.e., the concentration time series in our case.

The complete set of descriptors used in this study are listed in section 5.2.2.
With this information, an inductive learning element (decision trees) has

been used to forecast HABs, defined as surpassing one of the thresholds of
table 5.2, one, two and three weeks in advance. The design of the learning
element takes into account three major issues:
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Figure 5.1: Example of application of the trapezoidal rule. The function f(x)
(in blue) is approximated by a linear function (in red) between the points a,
b .

1. which descriptors are to be learned;

2. what feedback is available to learn these descriptors;

3. what representation is used for the descriptors.

The descriptors to be learned are the concentration levels of algae and re-
cent trend and integral of these concentrations. The type of feedback available
for learning determined the nature of the learning problem that the system
faces: supervised learning, which involves learning a function from examples
of inputs and outputs. The system learns a function from observations of
phytoplankton species abundances to a boolean output (whether there is a
HAB). Finally, the representation of the learned information, propositional
logic, plays a very important role in determining how the learning algorithms
work.

The last major factor in the design of the learning system was the avail-
ability of prior knowledge. The system begins with no knowledge about what
it is trying to learn. It has access only to the examples in the data series.

Learning decision trees

In this study, an algorithm for deterministic supervised learning is given as
input the correct value of the unknown function for particular inputs and tries
to recover the unknown function or something close to it. More formally, we
say that an example is a pair (x, f(x)), where x is the input and f(x) is the
output of the function applied to x. The task of pure inductive inference (or
induction) is this: given a collection of examples of f, return a function h that
approximates f.

Decision tree induction is used in this study, being one of the most suc-
cessful forms of learning algorithm and being the decision tree representation
very natural for humans. The decision tree takes as input a situation de-
scribed by a set of descriptors (a vector of attribute values) and returns a
decision: a single, predicted output value for the input. The input descriptors
have discrete (concentration level: threshold level, low level, high level; trend:
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positive, negative) and continuous (accumulated concentration) values. The
output is discrete and has exactly two possible values; therefore this a case of
classification learning (the system is learning a discrete-valued function), and,
specifically, of Boolean classification, wherein each example input is classified
as true (a positive example) or false (a negative example).

The decision tree reaches its decision by performing a sequence of tests.
Each internal node in the tree corresponds to a test of the value of one of
the input descriptors, and the branches from the node are labeled with the
possible values of the descriptor. Each leaf node in the tree specifies the value
to be returned by the function if that leaf is reached.

The aim here is to learn a definition for the goal predicate Bloom. We
set this up as a learning problem and state what descriptors are available to
describe examples in the domain as part of the input, which are the ones on
the following list:

1. Alexandrium catenella concentration (acatenella)

2. Alexandrium minutum concentration (amin)

3. Dinophysis caudata concentration (dcaud)

4. Phalacroma rotundatum concentration (drotund)

5. Dinophysis sacculus concentration (dsacculus)

6. Protoceratium reticulatum concentration (preticul)

7. Protocentrum lima concentration (prlim)

8. Pseudo-nitzschia spp. concentration (psnit)

9. Alexandrium catenella concentration derived over two weeks (acatenella s)

10. Alexandrium minutum concentration derived over two weeks (amin s)

11. Dinophysis caudata concentration derived over two weeks (dcaud s)

12. Phalacroma rotundatum concentration derived over two weeks (drotund s)

13. Dinophysis sacculus concentration derived over two weeks (dsacculus s)

14. Protoceratium reticulatum concentration derived over two weeks (preticul s)

15. Protocentrum lima concentration derived over two weeks (prlim s)

16. Pseudo-nitzschia spp. concentration derived over two weeks (psnit s)

17. Alexandrium catenella concentration integrated over four weeks (acatenella i)

18. Alexandrium minutum concentration integrated over four weeks (amin i)
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19. Dinophysis caudata concentration integrated over four weeks (dcaud i)

20. Phalacroma rotundatum concentration integrated over four weeks (dro-
tund i)

21. Dinophysis sacculus concentration integrated over four weeks (dsaccu-
lus i)

22. Protoceratium reticulatum concentration integrated over four weeks (preticul i)

23. Protocentrum lima concentration integrated over four weeks (prlim i)

24. Pseudo-nitzschia spp. concentration integrated over four weeks (psnit i)

A decision tree for this domain is shown in figure 5.2.
In the task of finding the optimal decision tree, heuristics are used to find

solutions in an acceptable time, but they are not guaranteed to be optimal.
There are many such heuristics for deciding the sequence of tests and the
specification of each test: C4.5 (Quinlan, 1993), C5.0 (Quinlan, 2004), the
Gini index (Gini, 1912), and others (Mitchell, 1997).

For being the one that produced the best classification results in prelimi-
nary tests, the Gini index is used in this study. In short, the Gini index is a
measure of the inequality of a distribution, i.e., it is a measure of statistical
dispersion. The Gini index can be computed by summing the probability of
each item being chosen times the probability of a mistake in categorizing that
item. It reaches its minimum (zero) when all cases in the node fall into a
single target category.

The forecasting system is composed of six different decision trees (im-
plemented in Python using the Orange data-mining toolbox (Demšar et al.,
2013)), which predict bloom events one, two and three weeks in advance, re-
spectively. Three cases use the full set of descriptors, and the other three a
subset of only the concentration levels (descriptors 1–8 from the list above).
This subset of descriptors are used to show the effect of the additional derived
descriptors on the system performance. Furthermore, the performance of these
decision trees is also compared to classifiers using the K nearest neighbors
(KNN) technique with the same data input, totaling twelve cases summarized
on table 5.3.

The decision trees learning configuration is:

• Data subsets with less than 10 instances are not split any further.

• Induction stops when the proportion of majority class in a node exceeds
85%.

• The is a bottom-up post-pruning by removing the subtrees of which all
leaves classify to the same class.
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<=180000

amin_i

(180000, 220000]

True (87.89%)

>220000

dcaud_s

<=900

True (75%)
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>1100

amin_i

<=0

psnit_i

>0

False (85.28%)

<=7882.5

True (60%)

>7882.5

False (78.95%)

<=28665

amin_i

>28665

prlim_s

<=62.5

dsacculus_i

>62.5

dcaud_i

<=0

True (66.67%)

>0

False (88.89%)

<=305

True (60%)

>305

False (100%)

<=2.5

True (90.91%)

>2.5

False (75%)

<=22523

True (94.59%)

>22523

False (100%)

<=624.5

True (84.62%)

>624.5

Figure 5.2: Decision tree for case b. The percentage associated to the pre-
diction of each leave corresponds to the confidence level. Notice that this
particular tree only uses the amin, psnit, dcaud s, prlim s, amin i, dcaud i,
dsacculus i and psnit i descriptors, in effect considering the rest to be irrele-
vant.
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Learning system Prediction Input

Case
Decision

tree
KNN

One
week

Two
weeks

Three
weeks

Single
data point

Integral Derivative

a X X X
b X X X X X
c X X X
d X X X X X
e X X X
f X X X X X
g X X X
h X X X X X
i X X X
j X X X X X
k X X X
l X X X X X

Table 5.3: Characteristics of the cases studied. The Prediction column in-
dicates the advance in forecast time. The input to each system can be: the
concentration level of the current week (single data point), the integral of the
concentrations of the last four weeks, and the derivative of the concentration
of the last two weeks.

The proportion between classes on the original dataset was of 28.7% of
positive samples and 71.3% of negative samples. Therefore, it is a case of
class imbalance in binary classification (Japkowicz, 2000). Imbalance has a
serious impact on the performance of classifiers. Learning algorithms that do
not consider class imbalance tend to be overwhelmed by the majority class
and ignore the minority class Chawla et al. (2004). Two typical approaches
followed to address the class imbalance problem are:

Over-sampling: Increasing the number of minority instances by replicating
them. This results in a larger dataset which retains all the original data
but may introduce bias. As the size increases, however, it can impact
computational performance as well (Ling and Li, 1998).

Under-sampling: Extracting a smaller set of the majority instances and
keeping the minority. This results in a smaller dataset where the distri-
bution between classes is closer. However, data has been discarded that
could have been valuable (Kubat and Matwin, 1997).

We followed the under-sampling approach, by taking out a 50% of the negative
samples for the training and testing of the systems. The proportion on the
new dataset was of 44.6% of positive samples and 55.4% of negative samples.
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5.3 Results

Twelve different cases of the predictor have been studied (table 5.3 shows their
characteristics) and the following indicators have been calculated:

• Accuracy: (TPs + TNs)/(TPs + TNs + FPs + FNs)

• Precision: TPs/(TPs + FPs)

• Sensitivity: TPs/(TPs + FNs)

• Specificity: TNs/(TNs + FPs)

where TPs are true positives (actual bloom cases that have been predicted
successfully); TNs are true negatives (actual non-bloom cases that have been
predicted successfully); FPs are false positives (actual non-bloom cases that
have been predicted as bloom cases); and FNs are false negatives (actual
bloom cases that were not predicted).

The predictors have been tested with a leave-one-out cross-validation (Stone,
1974). Cross-validation is a model validation technique for assessing how the
results of a statistical analysis will generalize to an independent data set. It is
mainly used in settings where the goal is prediction and one wants to estimate
how accurately a predictive model will perform in practice, as is our case.
In a prediction problem, a model is usually given a dataset of known data on
which training is run (training dataset), and a dataset of unknown data against
which the model is tested (testing dataset). Leave-one-out cross-validation is
a cross-validation where given a dataset of N points, the predictor is trained
on all the data except for one point and a prediction is made for that point,
repeated N separate times. The average error is computed and used to eval-
uate the predictor. It is known (Vapnik and Chapelle, 1999; Chapelle et al.,
2002) that the leave-one-out procedure gives an almost unbiased estimate of
the expected generalization error. The results are shown in table 5.4.

The decision tree (a, b, e, f, i, j ) performs better than the equivalent KNN
(c, d, g, h, k, l) with respect to accuracy and also, in the majority of the cases,
with respect to precision, sensitivity and specificity.

In the cases of one-week forecasting, the systems using only the concen-
tration value as input (a, c) performed better than the systems using all the
descriptors (b, d). This can be generalized to the majority of the cases also
for two-week and three-week forecasting.

5.4 Discussion

The objective of the forecasting efforts of this study is to be able to predict the
maximum number of bloom cases, minimizing at the same time the number of
false negatives, so that the system can be trusted. From a bay management
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Case Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

a 83 85 76 89
b 82 83 75 87
c 82 83 74 88
d 76 73 73 78
e 78 80 67 87
f 79 81 68 87
g 77 82 63 89
h 74 71 71 77
i 78 81 65 88
j 78 80 67 86
k 53 35 06 90
l 69 66 65 73

Table 5.4: Performance of the system. Average data are shown. Performance
is calculated using leave-one-out cross-validation. Bold text highlights best
results for each column.

perspective, the priority is not to miss blooms, even at the cost of increasing
false negatives. Therefore, the most relevant indicator, to evaluate the per-
formance of the system, is the sensitivity, as it is (inversely) related to how
many true blooms the system is missing. The second most relevant indicator
is the precision, as it represents the proportion between true positives and
false positives.

Overall, in one-week forecasting, the best system is the one using decision
trees and the concentration level of the current week (case a), with an accuracy
of 83%, precision of 85%, sensitivity of 76% and specificity of 89%. In two-
week forecasting, the best system is the one using KNN and the concentration
level of the current week (case g), with an accuracy of 77%, precision of 82%,
sensitivity of 63% and specificity of 89%. In three-week forecasting, the best
system is the one using decision trees and the the full set of descriptors (case
j ), with an accuracy of 78%, precision of 80%, sensitivity of 67% and specificity
of 90%.

As expected, the quality of the prediction degrades in time (see figure 5.3),
therefore a trade-off exists between the quality of the prediction and the time
at disposal to take decisions.

A fact to highlight is that the majority of cases do not benefit from using
extra descriptors (the derivative and the integral of the concentration). This
indicates that a better knowledge-representation is needed and, if found, it
will improve the results.

Regarding the most relevant performance metric, sensitivity, the proposed
systems achieve rates of 65–76%, higher than the success rate of 62% at-
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Figure 5.3: Performance comparison of the predictor with data from one week
before (case b), two weeks before (case f ) and three weeks before (case j )
using the same input descriptors.

tributed to regional models (Wong et al., 2009).
Precision, the second most relevant indicator, achieves rates of 80%–85%,

comparable to the 85% rate of the study cited above these lines.

5.5 Conclusions

The forecast of algal-bloom occurrence using machine-learning techniques,
implemented exclusively with open source software libraries, has been investi-
gated for a bay in the North Western Mediterranean. The K nearest neighbors
method (KNN), decision tree algorithms and different knowledge representa-
tions have been applied to a database of cases spanning a decade. Blooms
are predicted one, two and three weeks in advance. It has been found that
the best results in predicting algal-bloom occurrence are obtained: in one-
week forecasting, using decision trees and phytoplankton cell abundances of
the current week; in two-week forecasting, using KNN and phytoplankton cell
abundances of the current week; in three-week forecasting, using decision trees
and phytoplankton cell abundances, their trend and their accumulated value.
Decision trees give better results when compared to KNN in the majority of
the cases.

Data used in this study refer to a weekly sampling-frequency and were
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sufficient to achieve a 65–76% of success in precision, which quantifies how
many bloom events the system is missing. Precision achieve rates of 80%–
85%, which quantifies how many of the detected blooms are not false alarms.

The computational data-processing time for the forecast is of the order
of minutes on a common desktop computer (e.g., Intel Core 2 Duo 1.6 GHz
processor with 2 GB of RAM), but the previous water sampling and analysis
to determine the phytoplankton abundances take two to three days, leaving
only a few days to organize a preventive action in the case of a forecast one
week in advance.

Current monitoring programs rely on manual optical microscopy for phyto-
plankton identification, but new imaging systems are being developed (Camp-
bell et al., 2010; Sosik and Olson, 2007; Dubelaar and Gerritzen, 2000), which
are capable of unattended, long-duration deployment and produce high-quality
images that allow many phytoplankton cells to be identified with respect to
genus or even species, with automated image-classification’s accuracy compa-
rable to that of human experts. Replacing the manual sampling methodology
with a faster, automated sampling system would provide a longer reaction
window. This automated-sampling technology is foreseen to become cheaper,
more manageable, and easier to operate (Islam et al., 2011), and therefore
suitable to be deployed at a large scale.

Future work includes feeding the system with data coming from new, auto-
mated flow cytometers (laser-based, biophysical instruments employed in cell
counting and cell sorting, which work by suspending cells in a stream of fluid
and passing them by an electronic detection apparatus). These cytometers
are capable of rapid, unattended analysis of individual plankton cells for long
periods of time, allowing to set-up automatic monitoring sensor-networks.

Future work also includes the study of how much the results would improve
with a higher sampling-frequency.

Regarding how to involve citizens on this research, if the data were made
public alongside the code, as in the project Citclops Data Explorer (EyeOn-
Water, 2015), users with software coding knowledge could try to implement
new forecasting algorithms and compete between them for the most robust
solution.

Additionally, this project could be coupled with other initiatives focused on
phytoplankton monitoring. Zooniverse’s Plankton Portal (Borne and Team,
2011), a project where volunteers help marking images of plankton taken by
underwater imaging systems, could make use of the bloom forecasting to know
when “more interesting” data (i.e., with a higher phytoplankton concentra-
tion) is going to happen.



Chapter 6

Bio-optical time series
forecasting based on DIY
technologies: a modeling

approach

This chapter is based on the previous author’s work:

Monolithic spectrometer for environmental monitoring applications
3rd prize in student poster competition in IEEE/OEE Oceans Confer-
ence and Exhibition, Oceans’07, Aberdeen Scotland, 2007.

Low cost hyperspectral device suitable for monitoring sensor net-
works
Conference talk and proceedings in 1st MARTECH International Work-
shop On Marine Technology, Vilanova i la Geltrú (Spain), 2007.

Low cost hyperspectral sensors: potential applications for charac-
terization of multi-scale ocean processes
Conference talk and proceedings in 1st EOS Topical Meeting on Blue
Photonics R© - Optics in the Sea, Aberdeen (Scotland), 2009.

6.1 Introduction

On chapter 3 we showed how open source software was used to tackle the
automatic analysis of video images. Chapter 4 expanded this concept by
adding the use of low-cost hardware for in-situ data processing. Chapter 5
addressed the forecasting of harmful algal blooms applying also open source
software. The current chapter, following the same structure, introduces again
the use of low-cost hardware for an issue similar to the previous chapter.

46
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Color is probably the most informative cue for object recognition and
classification in natural scenes (Rzhanov et al., 2015). Optical sensors have
proven useful for pollution detection and biological studies, in addition to pre-
diction of underwater visibility and water depth for navigation purposes and
naval operations (Dickey, 2004). They have significant advantages compared
to conventional sensor types, in terms of their properties (Forrest et al., 1996).
Some of the advantages of optical over non-optical sensors are:

• Greater sensitivity

• Electrical passiveness

• Ease of miniaturization

• Light weight

• Freedom from electromagnetic and other common interferences

• Reduced maintenance

• Ruggedness

• Feasibility of distributed sensing

Hyperspectral sensing is the analysis of signals using a large number of
optical channels —corresponding to spectrum intervals—. It is distinguished
from multispectral sensing by employing significantly more than the typical
3–8 channels. Capturing the same object on many bands of the spectrum to
generate a data cube can reveal objects and information that more limited
scanners cannot pick up. Hyperspectral data analysis has shown to be a
reliable technique to identify several water components (Louchard et al., 2002;
Lee and Carder, 2002).

In the past, hyperspectral sensors were mainly used in laboratories or on
expensive mobile platforms due to their big size and high cost, which reduced
their applicability for in-situ measurements. Miniaturization has increased
the portability of this type of sensors and has provided additional advantages:
price and power requirements have also been reduced considerably.

In this chapter we present some preliminar results, as proof of concept, of
how the manual water sampling and algal concentration measurements from
chapter 5 could be replaced by low-cost do-it-yourself hardware with a minia-
turized hyperspectral sensor. First we simulate the optical data that would
be captured by a system of these characteristics. Next, this data is processed
using a decision tree similarly to section 5.2.2 to estimate if the concentration
from a harmful algal species exceeds an alarm threshold.
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6.2 Materials and Methods

6.2.1 Data description

The logistics of deploying and maintaining an underwater hyperspectral sen-
sor for a duration similar to the time series from chapter 5 were out of the
scope of this thesis. Instead, the generation of data relied on the use of
the radiative transfer numerical model Hydrolight/Ecolight 5.0 (Mobley and
Sundman, 2008). A radiative transfer model is a model implementing the Ra-
diative Transfer Equation (RTE), which in our case describes the change of the
light field under water due to absorption, emission, and scattering processes
(Mobley, 1994).

Using this model and the algal concentrations from chapter 5, we simulated
the measurements of an hyperspectral sensor. The mesurand chosen was the
vertical diffuse attenuation coefficient for downwelling irradiance (Kd). Kd is
an important optical property often used in determination of photosynthetic
and biological processes in the water column (Marra et al., 1995; McClain
et al., 1996). It is an apparent optical property (AOP) that depends on both
the medium and geometric structure of the ambient light field. However, as
shown in many observations, it is often insensitive to environmental effects
except for extreme conditions (Simon and Shanmugam, 2013). The sampling
point was simulated for a depth of 0.5 m and the wavelengths of 320, 360, 400,
440, 480, 530, 615, 680, 715, 750, 780, 827.5 and 865 nm. Sample simulated
Kd spectra are shown in figure 6.6.

The radiative transfer model had a built-in library of optical properties for
different algal groups. We aggregated the concentration levels of each algal
species from the monitoring progam mentioned on section 5.2.1 based on its
algal group. Hence, we obtained a dataset of 4 variables (the concentration
levels of 4 algals groups) from a dataset of 73 variables (the concentration
levels of 73 algal groups):

Cryptophyceae: Cryptomonads.

Diatoms: Cylindrotheca closterium, Asterionellopsis glacialis, Asterionella
formosa, Thalassionema nitzschioides, Thalassionema frauenfeldii, Li-
oloma pacificum, Cerataulina pelagica, Chaetoceros curvisetus, Chaeto-
ceros didymus, Chaetoceros lorenzianus, Chaetoceros peruvianus, Chaeto-
ceros pseudocurvisetus, Chaetoceros socialis, Leptocylindrus mediterra-
neus, Detonula pumila, Ditylum brightwellii, Guinardia flaccida, Hemi-
aulus sinensis, Hemidiscus cuneiformis, Planktoniella sol, Rhizosolenia
cf. imbricata, Guinardia delicatula, Dactyliosolen fragilissimus, Rhi-
zosolenia robusta, Rhizosolenia setigera, Guinardia striata, Skeletonema
costatum, Stephanopyxis turris, Thalassiosira eccentrica, Thalassiosira
rotula.
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Figure 6.1: Processing chain to generate the time series of Kd.

Dinophyceae: Alexandrium minutum, Alexandrium tamarense, Ceratium furca,
Ceratium fusus, Protoceratium reticulatum, Ceratium pentagonum, Cer-
atocorys horrida, Dinophysis ovum, Dinophysis acuta, Dinophysis cau-
data, Dinophysis rotundata, Dinophysis sacculus, Dinophysis tripos, Gonyaulax
polyedra, Gonyaulax polygramma, Gymnodinium sanguineum, Gyrodinium
spirale, Leptodiscus medusoides, Mesoporos perforatus, Noctiluca scintil-
lans, Oxyphysis oxytoxoides, Oxytoxum longiceps, Podolampas spinifer,
Podolampas bipes, Podolampas palmipes, Prorocentrum lima, Prorocen-
trum mexicanum, Prorocentrum micans, Prorocentrum minimum, Pro-
rocentrum triestinum, Protoperidinium divergens, Prorocentrum rostra-
tum, Glenodinium foliaceum, Gymnodinium pulchellum, Alexandrium
catenella.

Prymnesiophyceae: Acanthoica quattrospina, Coronosphaera mediterranea,
Emiliania huxleyi, Helicosphaera carteri, Rhabdosphaera clavigera, Syra-
cosphaera pulchra, Umbellosphaera tenuis.

We fed the radiative transfer model with this new time series. The data
corresponding to this complete list of species was available for the period
1998–2003. The bay was characterized as not having any other active optic
components (e.g., sediments or organic matter), with an homogeneous water
column structure and infinite depth. The objective of this exercise is not
to obtain an accurate simulation of the bay, but a first exploration of the
feasibility of detecting the presence of harmful algal blooms using low-cost
in-situ optical sensors.

The full processing chain to simulate Kd measurements from concentra-
tions of algal species is shown in figure 6.1.

In-situ hardware

The simulated measurements could be performed with a system similar to
the one described by Pons et al. (2007) found in appendix B. This study
showed a low-cost custom-made hyperspectral sensing system. The sensor was
a CMOS monolithic microspectrometer module of small size (54×32×9.5 mm)
from Boehringer Ingelheim microParts GmbH, governed by a Microchip dsPIC
16 bit microcontroller (figure 6.2). The sensor allowed to cover a spectrum
range from 200 to 1000 nm with 256 bands, each band converted to a 16 bit
value. The sensitivity of the device depended on the integration time (the
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(a) The complete system next to a watertight PVC container, to be used as a profiler on a
water column.

(b) Detail of the monolithic microspectrome-
ter module.

Figure 6.2: Custom made low-cost hyperspectral system designed and devel-
oped by Pons et al. (2007).

longer the time, the more photons collected). The reduced size and low con-
sumption made it suitable for isolated sensing with a high operation autonomy.
Furthermore, its low cost allowed the deployment of several devices, enabling
a potential sensor network for wide area monitoring.

This system has been compared to commercial alternatives of higher cost
designed to be used on a laboratory environment (Torrecilla et al., 2007,
2009). These studies confirmed that this type of microspectrometers are a
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Figure 6.3: Comparison of the complexity between: the system already de-
veloped and the new proposed implementation. On the former case, each
component needed soldering and careful handling. On the latter, components
can be directly interfaced by cable or socket.

potential tool for water component detection and monitoring. They offer per-
formances similar to commercial systems when derivative analysis (explained
in section 6.2.2) is used to interpret the signal.

We propose to go a step further on lowering the cost and easing the imple-
mentation, making it more suitable to be developed by citizens. We propose
to replace all the electronics from the cited system, except the microspectrom-
eter, for an off-the-shelf solution like an Arduino board —not available at the
time of the cited publication—. Arduino systems are open-source computer
hardware microcontroller-based kits. These systems provide sets of digital
and analog I/O pins that can be interfaced to various expansion boards and
other circuits (figure 6.4). They are available commercially in preassembled
form, or as do-it-yourself kits. The hardware design specifications are openly
available, allowing the Arduino boards to be manufactured by anyone.

The spectrometer could be also replaced if desired; the Spectruino (mySpec-
tral, 2015) is an open hardware Arduino based spectrometer. A Spectruino
DIY Kit is being sold consisting of a Spectruino shield —shields are boards
that can be plugged on top of the Arduino PCB extending its capabilities—,
a diffraction grating, two optical slits and plans to build a Spectruino case
from cardboard or polymethyl methacrylate (PMMA). Figure 6.3 exemplifies
the simplicity of this approach.

Some known oceanographic projects using sensors coupled with Arduino
hardware are: the do-it-yourself Remote Operated Vehicle (ROV) from Schnei-
der (2011), where an Arduino Pro Mini microcontroller serves as the ROV
brain and a second board as the data reader and display on the surface; the
low-cost Autonomous Underwater Vehicle (AUV) from Busquets et al. (2012),
where an Arduino Mega governs all the electronic elements; the spectrometer
for water quality monitoring from Lakesh et al. (2014) using an Arduino with
ATMEGA328P microcontroller; the underwater optical Sensorbot for in-situ
pH monitoring from Johansen (2012), being an Arduino Pro Mini the core
of the system; the multi-platform optical sensor for in-situ sensing of water
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(a) Arduino board with an RS-232 serial, 14
digital I/O pins (upper/right) and 6 ana-
log input pins (lower/right). Image from
Nicholas Zambetti (CC BY-SA 3.0).

(b) Arduino Nano with Spectruino shield.
With permission from Andrej Mosat c©2012
(mySpectral, 2015).

Figure 6.4: Arduino boards.

Figure 6.5: Raspberry Pi connected to five different Arduino boards with the
help of a USB hub. With permission from UUGear.com c©2015 (UUGear,
2015).
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Tree ID Number of descriptors Type of descriptors

a 11 Second derivative of Kd

b 13 Kd (m-1)
c 4 Concentration level (cell/L)

Table 6.1: Characteristics of the cases studied.

chemistry from Ng et al. (2012); and the low-cost moored buoy proposed by
Wernand et al. (2012).

6.2.2 Data processing

Our objective is to detect if the concentration level of any of the harmful algal
species from table 5.2 exceeds the threshold listed on this table (our definition
of bloom according to section 5.2.2). As our time-series of Kd spectra has been
generated from the data of chapter 5, we can associate each Kd spectrum to
the goal predicate bloom.

Instead of using as descriptors the attributes corresponding to the 13 chan-
nels of the Kd spectrum, we calculate a new set of descriptors: the second
derivative of the spectrum. Torrecilla Ribalta et al. (2012) demonstrated that
the second derivative enhances shape singularities in hyperspectral data, which
are significant since they are related to absorption features of phytoplankton
pigments present in the samples. In the cited study, data clustering of spec-
tral data from different algal groups performed better when using derived data
than using non derived spectra. In our case, by deriving twice, we obtain 11
new descriptors for each spectrum. Sample derived Kd spectra are shown on
figure 6.6.

These 11 descriptors are learned by a decision tree as in section 5.2.2. For
comparison purposes, two additional decision trees are trained and test. One
uses the original spectra, using the 13 channels measured by the sensor as
descriptors. The other tree uses the concentration level of the 4 algal groups
cited in section 6.2.1. The predicate goal is the same for the three systems:
detect if the input descriptors correspond to a bloom event. A summary of the
three systems is shown on table 6.1. All the systems have been implemented
in Python using the Orange data-mining toolbox as in chapter 5, with the
configuration described on page 39 . In order to avoid class imbalance, data
has been undersampled as explained on page 41.

6.3 Results

Three different cases of prediction system have been studied (table 6.1), and
the following indicators have been calculated: Accuracy, Precision, Sensitivity
and Specificity. The prediction systems have been tested with a leave-one-out



Chapter 6. Bio-optical time series forecasting 54

0

2

4

6

8

10

12

14

16

18
K

d
 (

m
−

1
)

Original spectrum (a)

400 500 600 700 800

Wavelength (nm)

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

D
e
ri

v
a
ti

v
e

Derived spectrum (a)

Original spectrum (b)

400 500 600 700 800

Wavelength (nm)

Derived spectrum (b)

Figure 6.6: Top: Sample simulated Kd spectra for (a) a bloom event on 30th
March, 2003 and (b) a non-bloom event on 13th June, 1999. Bottom: Second
derivative of the former spectra.

Tree ID Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

a 65 56 67 64
b 60 50 60 60
c 70 62 62 75

Table 6.2: Performance of the systems. Average data are shown. Performance
is calculated using leave-one-out cross-validation.

cross-validation. See section 5.3 for a description of the indicators and the
reasoning for choosing leave-one-out cross-validation. The results are shown
in table 6.2.

6.4 Discussion

As in chapter 5, the objective of this study is to be able to detect the maximum
number of bloom cases, minimizing at the same time the number of false
negatives, so that the system can be trusted. The priority is not to miss
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blooms, even at the cost of increasing false negatives. Therefore, the most
relevant indicator, to evaluate the performance of the system, is the sensitivity,
as it is (inversely) related to how many true blooms the system is missing. The
second most relevant indicator is the precision, as it represents the proportion
between true positives and false positives.

System c offers the best performance indicators of the three cases, except
for having a sensitivity 5% lower than system a. The better performance of
system c could be attributed to the fact that its input data (concentration
of algal groups) is closer to the original data (concentration of algal species)
used to set the bloom detection thresholds. Systems a and b use as input the
output of a model which has been fed with system’s c data.

In our experiment, the second derivative performs better than using the
original spectra, according to previous studies (Torrecilla Ribalta et al., 2012).

6.5 Conclusions

The present research is a first step to demonstrate the feasibility of using low-
cost and low-consumption hyperspectral sensors in combination with deriva-
tive spectroscopy to extract qualitative information of different water sam-
ples. It does not go in depth on testing different hyperspectral signal analy-
sis techniques, neither mentions topics such as phytoplankton discrimination
(Aymerich et al., 2014) or unmixing (Aymerich et al., 2010) that could be
applicable to our scenario and that the authors are aware of. But this first
analysis with decision trees based only on optical data provided a bloom alert
system with and accuracy of 65% and a sensitivity of 67%, opening the doors
to keep exploring this path.

The proposed processing was performed on a desktop computer, but it
could run in-situ and in real-time. The Arduino board proposed on sec-
tion 6.2.1 can be connected to the I/O ports of a Raspberry Pi (figure 6.5),
similarly to chapter 4. The system could be connected to the shore by cable
or radio frequency and send alarms in real time. The do-it-yourself philosophy
behind all the components listed allows citizens to build their own hyperspec-
tral sensors. This initiative could form part of citizen science projects focused
on using optical data for water characterization such as Citclops (Wernand
et al., 2012).

The use of both open hardware and open source allow users to not only
collect data, but to experiment with the system and improve it, sharing their
discoveries with the community. We believe that showing science as an activ-
ity where the general public can engage actively and discuss with other peers
outside from the scientific community will blur the barrier between scientists
and citizens. Citizens will benefit from understanding science better and en-
joying participating in it, and scientists will benefit from crowdsourcing and
their work being more recognized and appreciated.



Chapter 7

General conclusions

We started this thesis by stating some of the challenges that oceanography is
facing. In the last few years, there has been an explosion in the amount of data
that is available. But data alone are insufficient and need to be deciphered,
analyzed, interpreted, and modeled. The traditional method of turning data
into knowledge relies on manual analysis and interpretation. For long-term
monitoring applications, this form of proceeding is inefficient and expensive.
The information donated voluntarily by citizens can be used as a low-cost
labor way to find solution to this problems. The oceans and coasts are in peril
and we must use the full range of resources to effect positive change. Citizen
science is one such tool that has been underutilized.

We believe that open source software coupled with low-cost do-it-yourself
hardware can help to close the gap between science and citizens in the oceano-
graphic field. This is the objective of this thesis, to demonstrate how open
source software and low-cost hardware are effectively applied to oceanographic
research and how can it develop into citizen science.

We continue analyzing four different scenarios where to demonstrate this
idea.

The first case, chapter 3, is an example of using open source software
for video analysis. This analysis is based on an existing study where video
footage of adult lobster males were monitored and its motion quantified. We
adapt ans implement known motion detection techniques, using open source
libraries, to this scenario. Although according to the original publication the
previous manual methodology was enough to detect the circadian rhythms,
the proposed automatized methodology reveals that some information was
lost. The new system shows not only similar results, but periodicities not
found before.

We also propose that the motion detection algorithm could be comple-
mented with ground truthing performed by volunteers. Problematic frames
or segments where the automatic algorithm did not perform well could be
delivered to volunteers (e.g., making them available online) that would easily

56



Chapter 7. General conclusions 57

identify the real position of the lobster and provide feedback to the system. In
addition to that, if the data were made public alongside the code, any citizen
with software coding knowledge could try to implement new motion detection
algorithms and compete between them for the most robust solution.

Next, chapter 4 builds over the previous chapter. It analyzes the benefits of
using similar video processing techniques on footage from field recordings and
processed in-situ, as a proof of concept of its feasibility. Real footage recorded
by a submarine video-camera is analyzed on a Raspberry Pi simulating a
submarine installation. The system is able to detect and classify specimens,
using only open source libraries and off-the-shelf low-cost hardware already
available to build such systems.

With the mentorship of scientists, citizens living close to shallow water
masses could build and deploy their own amateur observational underwater
nodes with a limited investment. Sharing the captured preprocessed footage
with other users and classifying it interactively would be an unprecedented
source of data for characterizing the ecosystem that would complement the
current scientific and systematic approach.

Chapter 5 introduces open source machine learning software as a method
to improve biological observations. In this case, using data from an existing
monitoring field campaign of weekly sampling and microscopy measurements.
We implement a forecast system that explores temporal patterns in these series
of harmful phytoplankton species abundances. Decision trees are used to infer
the probability of having a toxic Harmful Algal Bloom on the following one,
two or three weeks, respectively. The system is able to achieve a 65–76% of
success in precision, which quantifies how many bloom events the system is
missing. Precision achieve rates of 80%–85%, which quantifies how many of
the detected blooms are not false alarms.

As in chapter 3, if the data were made public alongside the code, users
with software coding skills could try to improve the current forecasting algo-
rithm and engage on an open discussion about machine learning applied to
marine biology. Additionally, this project could be coupled with other initia-
tives focused on phytoplankton monitoring. Projects where volunteers help
on the sampling process or the data analysis would benefit from being able to
forecast when a bloom is going to happen, optimizing the mobilization of the
volunteers.

The last case studied, chapter 6, is based on the findings of chapter 5.
We present some preliminar results, as proof of concept, of how the manual
water sampling and algal concentration measurements from the previous chap-
ter could be replaced by low-cost do-it-yourself hardware with a miniaturized
hyperspectral sensor. First we simulate the optical data that would be cap-
tured by a system of these characteristics. Next, this data is processed using
a decision tree as before to estimate if the concentration from a harmful algal
species exceeds an alarm threshold. On this first exploration we obtain an
accuracy of 65% and a sensitivity of 67%, opening the doors to keep exploring
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this path.
The chapter also analyzes how this project could be implemented with

off-the-shelf low-cost components, allowing citizens to build their own hyper-
spectral sensors. As exposed in chapter 4, The use of both open hardware
and open source allow users to experiment with the system and improve it,
sharing their discoveries with the community, while generating innovative new
sources of data.

To summarize, we showed how open source software and low-cost do-it-
yourself hardware:

• offer better results than previous methodologies;

• use less resources (human and technical) than previous methodologies;

• allow to apply techniques already used in other fields to oceanography;

• open the doors to implicate volunteers on gathering new data by them-
selves and improve existing techniques.

The tools that we have developed and analyzed in this thesis should help
stakeholders, policy-makers, educators, conservation practitioners, and re-
searchers who wish to develop a marine or coastal citizen science program.
We also hope that the insights and recommendations that came out of our
discussions will stimulate further research on and assessment of marine and
coastal citizen science programs.

It is very unlikely that citizen science will ever replace traditional ma-
rine monitoring efforts as some tasks are not amenable to volunteers (e.g.,
specialist equipment required, inaccessible locations, frequency of reporting),
but it is clear that citizen science can play a large and increasingly impor-
tant supplemental role in future evidence provision, science, and monitoring.
The increasingly large spatial scales that are addressed by policy makers (e.g.,
regional, global) and the reduction of funding means that new methods are
needed to provide the evidence-base. Citizen science is one method of address-
ing tasks that cannot easily be fully automated and providing data at scales
that would not be possible using scientists alone.
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new tracking system for the measurement of diel locomotor rhythms in
the Norway lobster, Nephrops norvegicus (L.). Journal of Neuroscience
Methods, 173(2):215–224, 2008.

J. Aguzzi, C. Costa, Y. Fujiwara, R. Iwase, E. Ramirez-Llorda, and P. Mene-
satti. A Novel Morphometry-Based Protocol of Automated Video-Image
Analysis for Species Recognition and Activity Rhythms Monitoring in Deep-
Sea Fauna. Sensors, 9(11):8438–8455, 2009a.

J. Aguzzi, C. Costa, P. Menesatti, J. Garćıa, and F. Sardà. Monochro-
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M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Štajdohar, L. Umek,
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Appendix A

Code repository

All the code developed for this thesis is publicly available, under the GNU
General Public License version 3, at the GitHub repository https://github.

com/sponsfreixes/phd_thesis.
GitHub is a web-based Git repository hosting service. Git is a widely used

distributed version control system for software development. Git was initially
designed and developed by Linus Torvalds for Linux kernel development in
2005. Like the Linux kernel, Git is free software distributed under the terms
of the GNU General Public License version 2. GitHub offers both plans for
private repositories and free accounts, which are usually used to host open-
source software projects.
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Appendix B

Proceedings

This chapter includes a verbatim copy of the previous published conference
proceedings relevant for this thesis.
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